Tagged: Docker Toggle Comment Threads | Keyboard Shortcuts

  • Wang 21:06 on 2021-07-14 Permalink | Reply
    Tags: , Docker, , ,   

    Very well explanation on K8S network 

     
  • Wang 22:29 on 2021-06-23 Permalink | Reply
    Tags: Docker, , , ,   

    Spring Tips: Kubernetes Native Java 

     
  • Wang 23:00 on 2020-02-17 Permalink | Reply
    Tags: Docker,   

    distroless docker image from google

     
  • Wang 22:35 on 2020-02-12 Permalink | Reply
    Tags: Docker, ,   

    Serverless – knative

     
  • Wang 22:38 on 2020-02-04 Permalink | Reply
    Tags: Docker, ,   

    Good playlist to go through k8s

     
  • Wang 23:22 on 2019-10-25 Permalink | Reply
    Tags: , , Docker, , , ,   

    SpringOne Platform 2019 in Austin, https://springoneplatform.io/

     
  • Wang 21:30 on 2019-10-22 Permalink | Reply
    Tags: , , Docker, istio, ,   

    Istio playbook 

    Cloud platforms provide a wealth of benefits for the organizations that use them. However, there’s no denying that adopting the cloud can put strains on DevOps teams. Developers must use microservices to architect for portability, meanwhile operators are managing extremely large hybrid and multi-cloud deployments. Istio lets you connect, secure, control, and observe services.

    First, download Istio release version, unzip the package and enter the directory.

    Second, verify installation environment

    bin/istioctl verify-install
    

    Next, deploy Istio and select the demo profile which enable many features like tracing/kiali/grafana

    bin/istioctl manifest apply --set profile=demo
    

    Then, check Istio pods’ status, make sure all the related pods are running


    Istio Commands

    • authn: Interact with Istio authentication policies
    • authz: (authz is experimental. Use istioctl experimental authz)
    • convert-ingress: Convert Ingress configuration into Istio VirtualService configuration
    • dashboard: Access to Istio web UIs like kiali, grafana, prometheus, jaeger
    • deregister: De-registers a service instance
    • experimental: Experimental commands that may be modified or deprecated
    • help: Help about any command
    • kube-inject: Inject Envoy sidecar into Kubernetes pod resources
    • manifest: Commands related to Istio manifests
    • profile: Commands related to Istio configuration profiles
    • proxy-config: Retrieve information about proxy configuration from Envoy [kube only]
    • proxy-status: Retrieves the synchronization status of each Envoy in the mesh [kube only]
    • register: Registers a service instance (e.g. VM) joining the mesh
    • validate: Validate Istio policy and rules
    • verify-install: Verifies Istio Installation Status or performs pre-check for the cluster before Istio installation
    • version: Prints out build version information

     
  • Wang 21:20 on 2019-04-19 Permalink | Reply
    Tags: Docker,   

    Compile consul source code and generate executable scripts 

    Recently I have some special requirements which ask to compile consul source code and generate executable scripts, below are the general steps:

    1. Make sure you have installed docker, go, nodejs

    xxx@xxx consul $ docker version && node --version && go version
    Client: Docker Engine - Community
     Version:           18.09.2
     API version:       1.39
     Go version:        go1.10.8
     Git commit:        6247962
     Built:             Sun Feb 10 04:12:39 2019
     OS/Arch:           darwin/amd64
     Experimental:      false
    
    Server: Docker Engine - Community
     Engine:
      Version:          18.09.2
      API version:      1.39 (minimum version 1.12)
      Go version:       go1.10.6
      Git commit:       6247962
      Built:            Sun Feb 10 04:13:06 2019
      OS/Arch:          linux/amd64
      Experimental:     false
    v11.14.0
    go version go1.12.4 darwin/amd64
    

    2. Download consul source code

    cd $GO_HOME && mkdir -p src/github.com/hashicorp
    cd src/github.com/hashicorp
    git clone https://github.com/hashicorp/consul.git
    cd consul && git checkout v1.4.4 -b <BRANCH_NAME>
    

    3. Modify UI templates under ui-v2/app/templates/

    4. Compile & generate executable scripts

    export RELEASE_UNSIGNED=1
    export ALLOW_DIRTY_GIT=1
    sh build-support/scripts/release.sh --tag false --sign false --release <RELEASE_NAME>
    

    5. Test consul

    bin/consul agent 
               -datacenter='207' 
               -bind='10.49.32.224' 
               -bootstrap-expect=1 
               -data-dir="data/" 
               -log-level=INFO 
               -server 
               -ui
    

    NOTE:

    1. generate consul packages locations: bin/consul, pkg/bin, pkg/dist
    2. reference: https://github.com/hashicorp/consul/blob/master/.github/CONTRIBUTING.md
     
  • Wang 22:08 on 2019-03-07 Permalink | Reply
    Tags: Docker, , ,   

    Consul with ACL 

    Enable ACL in Consul to protect your configurations, I deployed Consul by Helm.

     
  • Wang 22:12 on 2019-02-11 Permalink | Reply
    Tags: , , , Docker, , , , , ,   

    Guarantee service availability in kubernetes 

    A good service not only provide good functionalities, but also ensure the availability and uptime.

    We reinforce our service from QoS, QPS, Throttling, Scaling, Throughput, Monitoring.

    Qos

    There’re 3 kinds of QoS in kubernetes: Guaranteed, Burstable, BestEffort. We usually use Guaranteed, Burstable for different services.

    #Guaranteed
    resources:
      requests:
        cpu: 1000m
        memory: 4Gi
      limits:
        cpu: 1000m
        memory: 4Gi
    
    #Burstable
    resources:
      requests:
        cpu: 1000m
        memory: 4Gi
      limits:
        cpu: 6000m
        memory: 8Gi
    
    QPS

    We did lots of stress test on APIs by Gatling before we release them, we mainly care about mean response time, std deviation, mean requests/sec, error rate (API Testing Report), during testing we monitor server metrics by Datadog to find out bottlenecks.

    We usually test APIs in two scenarios: internal, external. External testing result is much lower than internal testing because of network latency, network bandwidth and son on.

    Internal testing result

    ================================================================================
    ---- Global Information --------------------------------------------------------
    > request count                                     246000 (OK=246000 KO=0     )
    > min response time                                     16 (OK=16     KO=-     )
    > max response time                                   5891 (OK=5891   KO=-     )
    > mean response time                                    86 (OK=86     KO=-     )
    > std deviation                                        345 (OK=345    KO=-     )
    > response time 50th percentile                         30 (OK=30     KO=-     )
    > response time 75th percentile                         40 (OK=40     KO=-     )
    > response time 95th percentile                         88 (OK=88     KO=-     )
    > response time 99th percentile                       1940 (OK=1940   KO=-     )
    > mean requests/sec                                817.276 (OK=817.276 KO=-     )
    ---- Response Time Distraaibution ------------------------------------------------
    > t < 800 ms                                        240565 ( 98%)
    > 800 ms < t < 1200 ms                                1110 (  0%)
    > t > 1200 ms                                         4325 (  2%)
    > failed                                                 0 (  0%)
    ================================================================================
    

    External testing result

    ================================================================================
    ---- Global Information --------------------------------------------------------
    > request count                                      33000 (OK=32999  KO=1     )
    > min response time                                    477 (OK=477    KO=60001 )
    > max response time                                  60001 (OK=41751  KO=60001 )
    > mean response time                                   600 (OK=599    KO=60001 )
    > std deviation                                        584 (OK=484    KO=0     )
    > response time 50th percentile                        497 (OK=497    KO=60001 )
    > response time 75th percentile                        506 (OK=506    KO=60001 )
    > response time 95th percentile                       1366 (OK=1366   KO=60001 )
    > response time 99th percentile                       2125 (OK=2122   KO=60001 )
    > mean requests/sec                                109.635 (OK=109.631 KO=0.003 )
    ---- Response Time Distribution ------------------------------------------------
    > t < 800 ms                                         29826 ( 90%)
    > 800 ms < t < 1200 ms                                1166 (  4%)
    > t > 1200 ms                                         2007 (  6%)
    > failed                                                 1 (  0%)
    ---- Errors --------------------------------------------------------------------
    > i.g.h.c.i.RequestTimeoutException: Request timeout after 60000      1 (100.0%)
     ms
    ================================================================================
    
    Throttling

    We throttle API by Nginx limit, we configured ingress like this:

    annotations:
      nginx.ingress.kubernetes.io/limit-connections: '30'
      nginx.ingress.kubernetes.io/limit-rps: '60'
    

    And it will generate Nginx configuration dynamically like this:

    limit_conn_zone $limit_ZGVsaXZlcnktY2RuYV9kc2QtYXBpLWNkbmEtZ2F0ZXdheQ zone=xxx_conn:5m;
    limit_req_zone $limit_ZGVsaXZlcnktY2RuYV9kc2QtYXBpLWNkbmEtZ2F0ZXdheQ zone=xxx_rps:5m rate=60r/s;
    
    server {
        server_name xxx.xxx ;
        listen 80;
        
        location ~* "^/xxx/?(?<baseuri>.*)" {
            ...
            ...        
            limit_conn xxx_conn 30;
            limit_req zone=xxx_rps burst=300 nodelay;
            ...
            ...        
    }
    
    Scaling

    We use HPA in kubernetes to ensure auto (Auto scaling in kubernetes), you could check HPA status in server:

    [xxx@xxx ~]$ kubectl get hpa -n test-ns
    NAME       REFERENCE             TARGETS           MINPODS   MAXPODS   REPLICAS   AGE
    api-demo   Deployment/api-demo   39%/30%, 0%/30%   3         10        3          126d
    
    [xxx@xxx ~]$ kubectl get pod -n test-ns
    NAME                           READY     STATUS    RESTARTS   AGE
    api-demo-76b9954f57-6hvzx      1/1       Running   0          126d
    api-demo-76b9954f57-mllsx      1/1       Running   0          126d
    api-demo-76b9954f57-s22k8      1/1       Running   0          126d
    
    
    Throughput & Monitoring

    We integrated Datadog for monitoring(Monitoring by Datadog), we could check detail API metrics from various dashboards.

    Also we could calculate throughout from user, request, request time.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: